Posts Tagged ‘current’

I have always found it is quite hard to show the path of the current in a bridge rectifier to A-level students using diodes alone. The diodes are tiny, for a start, and you end up following the wire with your finger around, but students seem to get lost in the process. I still introduce the rectifier using diodes and one thing I show them is that even using a DC voltmeter doesn’t change the sign. This is convincing for some, but it is still nice to be able to give further proof of what’s going on.

The diagram might also help, because it is easier to follow the path around.

Bridge Rectifier

However, I have started building rectifiers with LEDs alongside the diode version and it works a treat. The first thing I show them is the circuit on DC current. Only two of the four LED light up, so I can ask “What would happen, if I reverse the polarity?” They now seem to get it and they often answer correctly that the other two LED will light up. I change the polarity several times to simulate the two half-waves, as in the images below.

Then, I get the spinning wheel we use to observe ripples in the ripple tank (the one with gaps, I can’t remember the name) and put the LED rectifier on AC. The result can be seen in the video below.

Here is a lovely classroom demonstration that I saw at the ASE Conference 2010 in Nottingham. The demo was part of the Physics Education Lecture, which displayed the best of the PhysEd magazine. I really learned a lot and was well impressed by the quality and creativity of the demonstrations, activities and workshops proposed by the Institute of Physics. As one of the IoP Network Coordinators I was very proud to be part of the Institute and see how many outstanding workshops and lectures they put together for the event. Apparently, the IoP did the majority of workshops and they were all free of charge, although the conference was organised by the ASE.

Anyway, coming back to our demonstration. At the lecture it was shown using two small glasses, so when I went back to my lab I thought; “What would happen, if I use two very tall columns of water? And this was the result!

Why don't the two liquids mix?

So, why won’t the two liquids mix?

I put cold water in the bottom column with some blue food colouring and boiling hot water in the top column with some red food colouring. The tricky bit is how to turn the top column upside down, as it is really hot and heavy, but it was well worth it! So, I put a sheet of paper on the top and then carefully turned it upside down (you might need a helper to do this). Then, I placed the top column on bottom one and as you can see, and unlike what the kids would expect, the red and blue water don’t mix. They actually stay unmixed for a very long time (over an hour at least).

But how do we explain such an effective phenomenon? Well, the hot water is less dense than the cold water at the bottom, as its particles have more kinetic energy, hence moving further apart from each other. The result is that we have two liquids of different density, with the less dense one at the top, which therefore will float on top of the denser cold water. It is a bit like having oil and water, you can tell your students!

This is a really nice demonstration that will really help your pupils to understand that hot liquid rises and cold liquid falls. It’s not only very memorable, but it also shows quite clearly that in heat convection currents it’s not the “heat” that rises, but the hot liquid, or gas.